1、在△ABC中(2cosA-)2+|1-tanB|=0,则△ABC一定是( )
A.直角三角形
B.等腰三角形
C.等边三角形
D.等腰直角三角形
2、如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )
A.2
B.
C.
D.
3、如图,的直径
的长为
,弦
长为
,
的平分线交
于
,则
长为( )
A.7
B.
C.
D.9
4、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )
A.中 B.国 C.加 D.油
5、将一个长为,宽为
的矩形纸片
,用剪刀沿图1中的虚线剪开,分成四块形状和大小都一样的小矩形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )
A.
B.
C.
D.
6、已知A,B两地相距,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速达到B地,乙骑摩托车匀速达到B地后立即沿原路返回,且往返速度的大小不变,他们离A地的距离y(单位:
)与甲行驶时间x(单位:
)的函数图象如图所示.下列说法错误的是( )
A.甲骑自行车的速度为
B.乙骑摩托车的速度为
C.甲乙两人先后相遇间隔时间为45分钟
D.乙出发36分钟时追上甲
7、如图,在等腰中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=
,则AD的长为( )
A.3
B.
C.
D.2
8、不等式组的解集在数轴上表示为( )
A. B.
C.
D.
9、2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )
A. 18×108 B. 1.8×108 C. 1.8×109 D. 0.18×1010
10、-3的倒数是( )
A.3 B.±3 C. D.
11、如图是三个物体的三视图和展开图,请将同一物体的视图和展开图搭配起来.
A与____;B与____;C与____.
12、一列数a1,a2,a3,…满足条件:a1=,an=
(n≥2,且n为整数),则a2020=_____.
13、如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,P(2a,a)是反比例函数y=的图象与正方形的边的一个交点,则图中阴影部分的面积是________.
14、在△ABC中,∠C=90°,cosB=,则a﹕b﹕c为 .
15、下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程: 已知:如图,直线 l 和直线 l 外一点 A
求作:直线 AP,使得 AP∥l
作法:如图
①在直线 l 上任取一点 B(AB 与 l 不垂直),以点 A 为圆心,AB 为半径作圆,与直线 l
交于点 C.
②连接 AC,AB,延长 BA 到点 D;
③作∠DAC的平分线AP.
所以直线AP就是所求作的直线,
根据小星同学设计的尺规作图过程,完成下面的证明证明:
∵AB=AC,
∴∠ABC=∠ACB_________(填推理的依据)
∵∠DAC 是△ABC 的外角,∴∠DAC=∠ABC+∠ACB
∴∠DAC=2∠ABC
∵AP 平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l_________(填推理的依据)
16、端午节来临之际,商家推出了两种礼盒进行售卖.A类礼盒中有4个甜味粽,4个肉馅粽;B类礼盒中有2个甜味粽,4个肉馅粽,6个咸鸭蛋,两种礼盒的成本分别为盒中食品的成本之和,包装费用忽略不计.其中,每个咸鸭蛋的成本为每个肉馅粽成本的,每个甜味粽的成本比每个肉馅粽的成本少,且每个甜味粽和每个肉馅粽的成本均为整数.已知A类礼盒的售价为50元,利润率为25%.端午节当天一共卖出了两类礼盒共计128盒,且卖出的B类礼盒至少50盒.后续工作人员在核算总成本的过程中,把每个甜味粽和每个肉馅粽的成本看反了,并用看反的每个肉馅粽的成本的
去计算每个成鸭蛋的成本,结果算出来的总成本比实际总成本少了480元,则当日实际卖出的两种礼盒的总成本为______元.
17、如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°
(1)求证:AB=BD;
(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41,
≈1.73)
18、计算:cos245°+cot230°.
19、先化简,然后从2<a<3的范围内选取一个你认为合适的无理数作为
的值代入求值.
20、小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;
(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?
21、如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
22、计算:
(1);
(2).
23、计算:
(1)
(2)
24、开学初,小明和小亮去文具店购买学习用品.小明用17元买了1支中性笔和3本笔记本;小亮用29元买了同样的中性笔2支和笔记本5本.求每支中性笔和每本笔记本的价格.