1、下列命题中,正确的是( )
A.菱形的对角线相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.正方形的对角线相等且互相垂直
D.矩形的对角线不能相等
2、已知x满足条件,若x为整数,则满足条件的整数x的个数为( )
A.5个
B.6个
C.7个
D.8个
3、在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(﹣,1),半径为1,那么⊙O与⊙A的位置关系是( )
A. 内含 B. 内切 C. 相交 D. 外切
4、如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
A.
B.
C.
D.
5、如图所示零件的左视图是( )
6、为了美化环境,某市加大对道路绿化的投资,2013年用于道路绿化投资100万元,2015年用于道路绿化投资144万元,求这两年道路绿化投资的年平均增长率。设这两年道路绿化投资的年平均增长率为x,根据题意所列方程为( )
A. B.
C. D.
7、随着行政区划调整,2017年我区计划新建续建主次干道项目25个,全年计划完成交通投资19.79亿元,其中19.79亿元用科学记数法可表示为( )
A. 1.979×107元 B. 1.979×108元 C. 1.979×109元 D. 1.979×1010元
8、下列运算正确的是( )
A.a2+3a3=4a5 B.(a+b)2=a2+b2
C.(b+a)(a-b)=a2-b2 D.(-3a3)2=6a6
9、下列各几何体中,主视图是圆的是( )
A. B.
C.
D.
10、已知m,n是一元二次方程x2+2x-2022=0的两个实数根,则代数式m2+4m+2n的值等于( )
A.2024
B.2022
C.2020
D.2018
11、计算:3a-2a=__________.
12、要使式子有意义,则x的取值范围是_______.
13、分解因式:______.
14、冬季运动越野滑雪的路段分为上坡、平地、下坡三种类型,滑雪者在同种路段中滑行速度保持不变.运动爱好者小明上坡滑雪3分钟与平地滑雪2分钟的路程相等.第一次训练中,他上坡、平地、下坡滑雪的时间分别是2分钟、2分钟、3分钟.第二次训练中,他上坡、平地、下坡滑雪的时间分别比第一次多了50%、50%、20%,总路程比第一次多32%.第三次训练所用时间为第一次的3倍,其中上坡、平地、下坡滑雪的时间依次减少,且总路程是第二次的2倍.设第三次训练中平地滑雪时间为b分钟,若b为整数,则b的值为 _____.
15、已知,当
=____时,
是
的反比例函数.
16、双二次方程x4﹣2019x2+4=0的所有实根之和为_____.
17、计算与化简
(1)
(2)
18、为了迎接2023年的“亚洲杯”足球联赛,某市设计了如图1所示的足球场,足球场看台上方是挡雨棚.将看台和挡雨棚的剖面图简化成如图2所示的平面图形.看台ABC是直角三角形,∠B=90°,线段MN是挡雨棚DE的固定拉索,点M、D在直线BC上,过挡雨棚端点E作水平地面AB的垂线段EF,垂足为F.测得点E在点D的北偏西75°方向,∠CAB=30,米,BC=9米,连接DF,已知
.根据题意,求:
(1)看台顶端C与雨棚端点D之间的距离CD的长:
(2)为了不影响球迷观看比赛的效果,要求挡雨棚端点E到地面AB的垂直高度EF不小于16.5米.请通过计算说明这一设计是否符合要求.(参考数据)
19、已知,如图①将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点处,得到折痕DE,然后把纸片展平;再如图②,将图①中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的
处,点B落在
处,得到折痕EF,
交AB于点M.
交DE于点N,再把纸片展平.
(I)如图①,填空:若AD=3,则ED的长为__________;
(II)如图②,连接,
是否一定是等腰三角形?若是,请给出证明:若不是,请说明理由:
(III)如图②,若,
,求
的值.(直接写出结果即可).
20、去年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从 4 名女班干部(小悦、小文、小雅和小宇)中通过抽签方式确定 2 名女生去参加.抽签规则:将 4 名女班干部姓名分别写在 4 张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的 3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小安被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小文被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小雅被抽中”的概率.
21、如图,直线与反比例函数
(
)的图象交于点
与
轴交于点
,
为该图象上任意一点,过
点作
轴的平行线交
轴于点
,交
于点
.
(1)求、
的值和反比例函数的表达式;
(2)若点为
中点时,求
的面积.
22、新冠疫情防控期间,某市某中学积极开展“停课不停学”网络教学活动.为了了解初中生每日线上学习时长t(单位:小时)的情况,在全校范围内随机抽取了部分初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的条形统计图和扇形统计图.根据图中信息,解答下列问题:
(1)在这次调查活动中,一共抽取了多少名初中生?并补全条形统计图.
(2)若该校有2000名初中生,请你估计该校每日线上学习时长在“3≤t<4”范围的初中生共有多少名?
23、如图,在中,
,
于点D,点E为
的中点,
的延长线交
的延长线于点F.求证:
.
24、如图,正方形中,
,
是
边的中点,点
是正方形内一动点,
,连接
,将线段
绕点
逆时针旋转
得
,连接
,
.
(1)如图1,求证:;
(2)如图2,若,
,
三点共线,求点
到直线
的距离.