1、已知点是直线
与双曲线
(
是不为0的常数)一支的交点,过点A作y轴的垂线,垂足为B,且
,则k的值为( )
A.3 B.27 C.-3 D.-27
2、下列说法中正确的是( )
A. 一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖
B. 为了解全国中学生的心理健康情况,应该采用普查的方式
C. 若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定
D. 一组数据8,3,7,8,8,9,10的众数和中位数都是8
3、分式方程的解是( )
A. x=3 B. x=﹣3 C. x1=﹣3,x2=2 D. x1=3,x2=2
4、下列命题中,不正确的是( )
A. 圆是轴对称图形 B. 圆是中心对称图形
C. 圆既是轴对称图形,又是中心对称图形 D. 以上都不对
5、绘制频数分布直方图时,计算出最大值与最小值的差为 ,若取组距为
,则最好应分 ( )
A. 组 B.
组 C.
组 D.
组或
组
6、经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【 】美元.
A.1.5×104
B.1.5×105
C.1.5×1012
D.1.5×1013
7、某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是( )
A. 成 B. 功 C. 其 D. 我
8、下列计算错误的是( )
A. 4x3•2x2=8x5 B. a4﹣a3=a
C. (﹣x2)5=﹣x10 D. (a﹣b)2=a2﹣2ab+b2
9、据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000次,数字338 600 000用科学记数法简洁表示为( )
A. 3.386×108 B. 0.338 6×109 C. 33.86×107 D. 3.386×109
10、如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )
A. B.
C.
D.
11、如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB 的中点D和顶点C,若菱形OABC的面积为12,则k的值为____________________
12、如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.
13、如图,在矩形中,点
在边
上,将矩形
沿
所在直线折叠,点
恰好落在边
上的点
处.若
,则折痕
的长为________.
14、若在实数范围内有意义,则
的取值范围是____.
15、在一个不透明的袋子中,装有6个大小和形状一样的小球,其中2个红球,2个白球,2个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个,则当_________时,这个事件必然发生.
16、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣
,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,
其中正确的结论是(填写代表正确结论的序号)__________________.
17、解不等式组.
18、计算:在一次数学社团活动课上,同学们测量一座古塔的高度,他们首先在
处安置测量器,测得塔顶
的仰角
,然后往塔的方向前进100米到达
处,此时测得塔顶
的仰角
,已知测量器高1.5米,请你根据以上数据计算出古塔
的高度.(保留根号)
19、在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
(1)若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系 ;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由.
(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.
①如图3,猜想AE与DF的数量关系并说明理由;
②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.
20、已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.
(1)如图(1),BA=BC,求证:四边形FMNC为菱形;
(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).
21、“停课不停学,学习不延期”,某市通过教育资源公共服务平台和有线电视为全市中小学开设在线“空中课堂”,为了解学生每天的学习时间情况,在全市随机抽取了部分初中学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:
组别 | 学习时间x(h) | 人数(人) |
A | 2.5<x≤3 | 40 |
B | 3<x≤3.5 | 170 |
C | 3.5<x≤4 | 350 |
D | 4<x≤4.5 |
|
E | 4.5<x≤5 | 90 |
F | 5小时以上 | 50 |
(1)这次参与问卷调查的初中学生有 人,中位数落在 组.
(2)补全条形统计图.
(3)若此市有初中学生2.8万人,求每天参与“空中课堂”学习时间3.5到4.5小时(不包括3.5小时)的初中学生有多少人?
22、某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.A课程成绩在70≤x<80这一组的是:70,71,71,71,76,76,77,78,78.5,78.5,79,79,79,79.5;
c.A,B两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
A | 75.8 | m | 84.5 |
B | 72.2 | 70 | 83 |
根据以上信息,回答下列问题:
(1)写出表中m=____________的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是____________(填“A”或“B”),理由是__________________________________________;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.
23、计算:
24、如图,二次函数的图像与x轴负半轴交于点E,平行于x轴的直线l与该抛物线交于A、B两点(点A位于点B左侧),与抛物线对称轴交于点
.
(1)求b的值;
(2)设C、D是x轴上的点(点D位于点C左侧),四边形ABCD为平行四边形,过点C、D分别作x轴的垂线,与抛物线交于、
.
①若,求m的值;
②当值最大时,四边形
的面积为______.