1、当m,n是实数且满足m﹣n=mn时,就称点Q(m, )为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y=的图象上,点O是平面直角坐标系原点,则△OAB的面积为( )
A.1 B. C.2 D.
2、如图,⊙I是△ABC的内切圆,D,E,F为三个切点.若∠DEF=52°,则∠A的度数为( )
A.76°
B.68°
C.52°
D.38°
3、今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如表:
则这8名选手得分的众数、中位数分别是( )
A.85、85 B.87、85 C.85、86 D.85、87
4、下列等式从左到右的变形,属于因式分解的是( )
A. x2+2x﹣1=(x﹣1)2 B. (a+b)(a﹣b)=a2﹣b2 C. x2+4x+4=(x+2)2 D. ax2﹣a=a(x2﹣1)
5、已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:
①甲车提速后的速度是60千米/时;
②乙车的速度是96千米/时;
③乙车返回时y与x的函数关系式为y=﹣96x+384;
④甲车到达B市乙车已返回A市2小时10分钟.
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
6、已知点在第四象限,则
的取值范围是( )
A. B.
C.
D.
7、如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为( )
A. B.
C.
D.
8、如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值是( )
A. B.
C.
D.
9、方程的解为( )
A.x=4
B.x=
C.x=
D.x=
10、如图是由6个相同的小正方体组成的立体图形,它的左视图是( )
A.
B.
C.
D.
11、如图,矩形ABCD,点E是边AD上一点,过点E作EFBC,垂足为点F,将
绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,如果点M恰好是边DC的中点,那么
的值是_______________。
12、如图,在正方形ABCD中,点E是边CD上一点,BF⊥AE,垂足为F,将正方形沿AE,BF切割分成三块,再将△ABF和△ADE分别平移,拼成矩形BGHF.若BG=kBF,则__________(用含k的式子表示)
13、如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①
=
;②sin∠BOF=
;③OF=
;④OG=BG;其中正确的是______.(只填序号)
14、如图,点A(1,0),B(0,2),把线段AB绕点A逆时针旋转90°,并延长至点C,使AC=2AB,则△ABD与△ACD的面积的比值等于_____.
15、若反比例函数的图象经过点(﹣2,﹣1),则这个函数的图象位于第_____象限.
16、已知a=4,b=9,c是a,b的比例中项,则c=_______
17、如图,在平面直角坐标系中,点A,C分别在x轴,y轴的正半轴上,四边形OABC是正方形,点在边AB上,连接OE,作
于点E,分别交x轴,BC于点D,F.
(1)求的值;
(2)求点F的坐标.
18、已知反比例函数y=(m﹣2)
(1)若它的图象位于第一、三象限,求m的值;
(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.
19、如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)点P是x轴下方的抛物线上的一个动点,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,当PE+EF有最大值时,求P点的坐标;
(3)在抛物线的对称轴上是否存在一点D使△BCD是以BC为斜边的直角三角形,若存在,请求出点D的坐标;若不存在,请说明理由.
20、为了让农民文化生活更加丰富多彩,某村决定修建文化广场,计划在一部分广场地面铺设相同大小规格的红色和白色地砖.经过市场调查,获取地砖市场相关信息如下:
| 购买数量低于5000块 | 购买数量不低于5000块 |
红色地砖 | 原价销售 | 原价的八折销售 |
白色地砖 | 原价销售 | 原价的九折销售 |
(1)如果购买红色地砖40块,白色地砖60块,共需付款920元:如果购买红色地砖50块,白色地砖35块,共需付款750元求红色地砖与白色地砖的原价各多少元?
(2)经过测算,修建这个文化广场需要购买两种地砖共计12000块,其中白色地砖的数量不少于红色地砖的数量的一半,且白色地砖的数量不多于7000块,求购买红色地砖与白色地砖各多少块时,付款最少.
21、某生态示范村种植基地计划用90亩~120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤.设原计划种植亩数为y(亩),平均亩产量为x(万斤).
(1)列出y(亩)与x(万斤)之间的函数关系式,并求自变量x的取值范围;
(2)为了满足市场需求,现决定改良葡萄品种.改良后的平均亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均亩产量各是多少万斤?
22、某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段进行了如下探究:
【观察与猜想】
(1)如图1,在矩形中,
,
,点E是
上的一点,连接
、
,
,则
的值为_________.
【类比探究】
(2)如图2,在四边形中,
,点E为
上一点,连接
,过点C作
的垂线交
的延长线于点G,交
的延长线于点F,求证:
.
【拓展延伸】
(3)如图3,在Rt中,
,
,
,将
沿
翻折,点A落在点C处得
,点E、F分别在边
、
上,连接
、
,
.连接
,若
,直接写出
的长度.
23、在△ABC中,AB=AC,BC=2,将△ABC绕点C顺针方向旋转α(0°<α<360°),得到△DEC,使点E在AB边上。
(1)如图1,连接AD,
①求证:四边形ABCD是平行四边形;
② 当AE=AD时,求旋转角α的度数;
(2)如图2,若AE=2BE,求AB的长。
24、以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、 下旬)日人均阅读时间的情况:
(1)从统计图可知,九年级(1)班共有学生多少人;
(2)求图22.1中a的值;
(3)从图22-1、22-2 中判断,在这次读书月活动中,该班学生每日阅读时间_______(填“普遍增加了”或“普遍减少了”);
(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1(即0.5≤t<10)小 时的人数比活动开展初期增加了多少人.
(每个小矩形含左端点,不含右端点) .