1、若反比例函数y=的图象过点(-2,1),则一次函数y=kx-k的图象过( )
A.第一、二、四象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、三象限
2、体育课上五名同学一分钟跳绳个数如下:126,130,132,134,130.则这组数据的众数和中位数是( )
A.130,130 B.130,131 C.134,132 D.131,130
3、在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名,设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为( )
A.
B.
C.
D.
4、一组不完全相同的数据a1,a2,a3,…,an的平均数为m,把m加入这组数据,得到一组新的数据a1,a2,a3,…,an,m,把新、旧数据的平均数、中位数,众数、方差这四个统计量分别进行比较,一定发生变化的统计量的个数是( )
A.1
B.2
C.3
D.4
5、如图,已知,小亮把三角板的直角顶点放在直线
上,若
,则
的度数为( )
A. B.
C.
D.
6、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为( )
A. B.
C.
D.
7、若3x=7,3y=,则x,y之间的关系为( )
A.互为相反数
B.相等
C.互为倒数
D.无法判断
8、由,可得出
与
的关系是( )
A.
B.
C.
D.
9、在平面直角坐标系中,已知点
关于
轴的对称点
,点
是
轴上的一个动点,当
是等腰三角形时,
值个数是( )
A.1个 B.2个 C.3个 D.4个
10、在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是
A. (1,2) B. (–1,2)
C. (–1,–2) D. (1,–2)
11、分解因: =______________________.
12、如图,已知在中,
,
,点
是边
的中点,
,将
沿直线
翻折,点
落在点
处,联结
,那么线段
的长为________.
13、如图,将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,展开后,若AB∶BC=4∶5,则∠CFD≈___________.(精确到0.01°)
14、如图,在中,
,点D是边BC上一动点(不与B、C重合),
,DE交AC于点E,且
.下列结论:①
∽
;②当
时,
与
全等;③
为直角三角形时,BD等于8或
.其中正确的有__________.(选填序号)
15、如图,在四边形ABCD中,AB = 5,∠A = ∠B = 90°,O为AB中点,过点O作OM⊥CD于点M.E是AB上的一个动点(不与点A,B重合),连接CE,DE,若∠CED = 90°且=
.现给出以下结论:
(1)△ADE与△BEC一定相似;
(2)以点O为圆心,OA长为半径作⊙O,则⊙O与CD可能相离;
(3)OM的最大值是;
(4)当OM最大时,CD = .
其中正确的是 _________ .(写出所有正确结论的序号)
16、如图,在△ABC中,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交AB于点D,同法得到点E,连接DE.若BC=10cm,则DE=_____cm.
17、如图,已知一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象相交于A、B两点,且点A的坐标是(1,2),点B的坐标是(﹣2,w).
(1)求一次函数与反比例函数的解析式;
(2)在x轴的正半轴上找一点C,使△AOC的面积等于△ABO的面积,并求出点C的坐标.
18、某商场计划招聘A、B两种岗位的人员,A岗位人员的工资方案:基本工资+抽成,其中基本工资为120元/天,每卖出一件商品得抽成2元;B岗位人员的工资方案:无基本工资,仅以卖商品抽成计算工资,若当天卖出不超过60件商品,每件得抽成4元,超过60件的部分每件抽成6元.以下表格是对这两种岗位的现有人员进行调查10天后的数据:
A岗位(件) | 58 | 59 | 60 | 61 | 62 |
天数 | 2 | 4 | 2 | 1 | 1 |
B岗位(件) | 58 | 59 | 60 | 61 | 62 |
天数 | 1 | 2 | 2 | 4 | 1 |
(1)现从A岗位人员销售的10天中随机抽取1天,求这1天的工资大于240元的概率;
(2)小王拟从A、B两个岗位中选择一个参加应聘,如果仅从日平均工资的角度考虑,请利用所学的统计知识为小王作出选择,并说明理由.
19、如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
20、某班主任对班里学生错题整理情况进行调查,反馈结果分为A、B、C、D四类.其中,A类表示“经常整理”,B类表示“有时整理”,C类表示“很少整理”,D类表示“从不整理”,并把调查结果制成如图所示的不完整的扇形统计图和条形统计图,请你根据图表提供的信息解答下列问题:
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别所对应扇形的圆心角度数为__________
;
(4)类别的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.
21、(1);
(2)先化简,再求值:,其中
.
22、如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米.
(1) 求真空管上端B到AD的距离(结果精确到0. 1米).
(2)求铁架垂直管CE的长(结果精确到0. 1米).
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
23、张老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类中女生有___名,D类中男生有___名,将下面条形统计图补充完整;
(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的大约多少人?
(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.
24、嘉嘉和琪琪一块去选汽车牌照,现只有四个牌照可随机选取,这四个牌照编号末尾数字如图所示.
牌照末尾数字 | 5 | 6 | 7 |
数量(个) | 1 | 1 | 2 |
(1)嘉嘉选取牌照编号末尾数字是6的概率是 ;
(2)请用树状图或列表法求她俩选取牌照编号末尾数字正好差1的概率.