1、若|m+3|+=0,点P(m,n)关于x轴的对称点P′为二次函数图象顶点,则二次函数的解析式为( )
A.y=(x﹣3)2+2
B.y=(x+3)2﹣2
C.y=(x﹣3)2﹣2
D.y=(x+3)2+2
2、在同一个圆中画两条直径,依次连接四个端点得到的四边形是( )
A. 菱形 B. 等腰梯形 C. 正方形 D. 矩形
3、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为
A. 4 B. 8 C. 16 D.
4、反比例函数y=的图象上有三点(x1,﹣1),B(x2,a),C(x3,3),当x3<x2<x1时,a的取值范围为( )
A.a>3
B.a<﹣1
C.﹣1<a<3
D.a>3或a<﹣1
5、如图,将半径为2,圆心角为的扇形
绕
点逆时针旋转,在旋转过程中,点
落在扇形
的弧
的点
处,点
的对应点为点
,则阴影部分的面积为( )
A.
B.
C.
D.
6、已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是( )
A. 平均数 B. 方差
C. 中位数 D. 众数
7、的相反数是( )
A. B.
C.
D.
8、下列实数、0、
,
中,无理数是( )
A.
B.0
C.
D.
9、如图,桌上放着一摞书和一个茶杯,从左边看到的图形是( )
A. B.
C.
D.
10、如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( )
A.3cm
B.4cm
C.2.5cm
D.2cm
11、计算:–2cos60°=______.
12、若一次函数 y=ax+b 的图象与一次函数 y=mx+n 的图象相交,且交点在 x 轴上, 则 a、b、m、n 满足的关系式是_____.
13、如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连接DQ.给出如下结论:
①DQ=1;②=
;③S△PDQ=
;④cos ∠ADQ=
.其中正确结论是____.(填写序号)
14、如图,正五边形ABCDE的各条对角线的交点为M,N,P,Q,R,它们分别是各条对角线的黄金分割点.若AB=2,则MN的长为__.
15、(2016四川省自贡市)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=______,tan∠APD的值=______.
16、图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为,则图3中线段AB的长为_________.
17、某校为了了解学生对世博礼仪的知晓程度,从全校1200名学生中随机抽取了50名学生进行测试.根据测试成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图(如图,其中部分数据缺失).又知90分以上(含90分)的人数比60~70分(含60分,不含70分)的人数的2倍还多3人.请你根据上述信息,解答下列问题:
(1)该统计分析的样本是( )
A.1200名学生;
B.被抽取的50名学生;
C.被抽取的50名学生的问卷成绩;
D.50
(2)被测学生中,成绩不低于90分的有多少人?
(3)测试成绩的中位数所在的范围是 ;
(4)如果把测试成绩不低于80分记为优良,试估计该校有多少名学生对世博礼仪的知晓程度达到优良;
(5)学校准备从这50名学生中,以测试成绩不低于90分为标准,随机选3人义务宣传世博礼仪,若小杰的得分是93分,那么小杰被选上的概率是多少?
18、如图,在一笔直的海岸线 L 上有相距 2km 的 A,B 两个观测站,B 站在 A 站的正东方向上,从 A 站测得船 C 在北偏东 60°的方向上,从 B 站测得船 C 在北偏东 30°的方向上,则船 C 到海岸线 l 的距离是 多少km?
19、如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.
(1)求抛物线的解析式;
(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.
(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.
20、(1)计算:;
(2)先化简,再求值,其中
,b=1.
21、操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;
(2)在(1)的条件下,求∠BEC的度数;
拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.
22、计算:.
23、今年我市对城区内的老旧小区进行升级改造,某小区准备修建一条长1350米的健身小路,甲、乙两个工程队想承建这项工程,经了解得到下表所示信息:
工程队 | 每天修路的长度(米) | 单独完成所每天所需天数(天) | 费用(元) |
甲队 | 50 | 800 | |
乙队 | 640 |
(1)______,
______.
(2)甲队先修了米之后,甲、乙两队一起修路,又用了
天完成这工程.
①当时,求出乙队修路的天数;
②求与
之间的函数关系式(不用写出
的取值范围);
③若总费用不超过23000元,求甲队至少先修多少米?
24、如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2+PB2=PC2,则称点P为△ABC关于点C的勾股点.
(1)如图2,在4×3的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点上,请找出所有的格点P,使点P为△ABC关于点A的勾股点.
(2)如图3,△ABC为等腰直角三角形,P是斜边BC延长线上一点,连接AP,以AP为直角边作等腰直角三角形APD(点A、P、D顺时针排列)∠PAD=90°,连接DC,DB,求证:点P为△BDC关于点D的勾股点.
(3)如图4,点E是矩形ABCD外一点,且点C是△ABE关于点A的勾股点,若AD=8,CE=5,AD=DE,求AE的长.