1、如图,一粗糙斜面放置在地面上,斜面顶端装有一光滑定滑轮,一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态。现用始终垂直于绳子的拉力F缓慢拉动N,直至悬挂N的细绳水平。已知斜面和M始终保持静止,则在此过程中( )
A.拉力F的大小先变大后变小
B.M所受斜面的摩擦力大小一定一直增加
C.地面对斜面的支持力大小一直增大
D.地面对斜面的摩擦力大小先增大后减小
2、如图所示,线圈L的直流电阻不计,AB为平行极板电容器上下极板,R为定值电阻。则( )
A.S闭合瞬间,因为L的自感作用明显,所以L所在支路电流竖直向上
B.S保持闭合一段时间后,A板带正电,B板带负电
C.S断开瞬间,左侧LC振荡电路电容器开始放电
D.S断开瞬间,左侧LC振荡电路电流强度最大
3、为了节能减排绿色环保,新能源汽车成为未来汽车发展的方向。为测试某款电动汽车的制动性能,使该电动汽车在平直公路上以10m/s的速度行驶,t=0时刻撒去牵引力并踩下刹车,其速度v随时间t变化的关系图像如图所示,不计空气阻力,则在0~5s内,下列说法正确的是( )
A.电动汽车的位移大小为25m
B.电动汽车受到的制动阻力保持不变
C.电动汽车受到的制动阻力越来越小
D.电动汽车的平均加速度大小为2m/s2
4、质量为m的物体甲从零时刻起中静止开始所受的合力F随时间t的关系图像如图甲所示,质量为m的物体乙零时刻从坐标原点处从静止开始所受的合力F随位移x的关系图像如图乙所示,下列说法正确的是( )
A.关系图像与横轴所围成的面积表示物体速度的变化量
B.时刻物体甲的动能为
C.关系图像与横轴所周成的面积表示物体速度的变化量
D.物体乙在坐标处,动量为
5、小明同学在研究物块与水平面之间的动摩擦因数时,将质量为10kg的物块放在水平地面上,用的水平恒力拉着物块向右做匀加速直线运动,如图甲所示。沿着物块运动的方向建立x轴,物块通过原点O时开始计时(t=0),其
的图像如图乙所示,重力加速度为10m/s²。下列判断正确的是( )
A.物块与水平面之间的动摩擦因数为0.5
B.物块在t=4s时的速度大小为6m/s
C.0~4s的时间内,力F对物块做的功为1170J
D.t=4s时撤去拉力F,物块能够继续滑行10m
6、范德格拉夫静电加速器由两部分组成,一部分是产生高电压的装置,叫作范德格拉夫起电机,加速罩(即金属球壳)是一个铝球,由宽度为D、运动速度为v的一条橡胶带对它充电,从而使加速罩与大地之间形成稳定的高电压U。另一部分是加速管和偏转电磁铁,再加上待加速的质子源就构成了一台质子静电加速器,如图中所示。抽成真空的加速管由多个金属环及电阻组成,金属环之间由玻璃隔开,各环与电阻串联。从质子源引出的质子进入真空加速管加速,然后通过由电磁铁产生的一个半径为b的圆形匀强磁场区域引出打击靶核。已知质子束的等效电流为,通过电阻的电流为
,质子的比荷
。单位面积上的电荷量叫做电荷面密度。下列说法不正确的是( )
A.若不考虑传送带和质子源的影响,加速罩内的电场强度为零
B.若不考虑传送带和质子源的影响,加速罩内的电势大小等于U
C.要维持加速罩上大小为U的稳定电压,喷射到充电带表面上的电荷面密度为
D.质子束进入电磁铁,并做角度为的偏转,磁感应强度
7、锤击式强夯机是一种常见的对松土进行压实处理的机器。锤击式强夯机将一质量为m的吊锤从距离地面高度为h处由静止释放,吊锤下落至地面后将松土压实,最终吊锤速度减为零后保持静止。已知吊锤从释放到速度减为零的时间为t,忽略空气阻力,重力加速度为g,则吊锤对松土的平均作用力的大小为( )
A.
B.
C.
D.
8、一定质量的理想气体,经过如图所示一系列的状态变化,从初始状态a经状态b、c、d再回到状态a,图中bc曲线为一条等温线,则下列说法正确的是( )
A.气体在状态c的温度大于气体在状态d的温度
B.从状态d到a的过程中,气体可能向外界放热
C.从状态a到状态c与从状态c到状态a的过程中,气体对外界做功的大小相等
D.从状态b到c的过程中,气体分子对容器壁单位面积上单位时间内撞击次数减少
9、某同学在商场购买了一个“水晶玻璃半球”(半径为R),欲利用所学的光学知识探究该“水晶玻璃半球”的光学性质。O点是匀质玻璃半球体的球心。平面水平放置,现用一束红光从距离口点为的C点入射至玻璃半球内,光线与竖直方向的夹角为θ,当θ=0°时光线恰好在球面发生全反射,若只考虑第一次射到各表面的光线,光在真空中传播的速率为c,则下列说法正确的是( )
A.该玻璃半球对红光的折射率为
B.红光在玻璃半球中传播速度为
C.调整角θ,若要使红光从球形表面出射后恰好与入射光平行,则θ=37°
D.θ=0°时用绿光从C点入射至玻璃半球内,光线不能在球面发生全反射
10、已知羽毛球所受的空气阻力与速度大小成正比,如图所示,将一个羽毛球竖直向上击出,若羽毛球落地前还没有做匀速运动,则羽毛球从被击出到落地前( )
A.加速度大小一直减小,方向一直不变
B.加速度大小一直减小,上升和下降时加速度方向相反
C.加速度大小先增大后减小,上升和下降时加速度方向相反
D.加速度大小先减小后增大,方向一直不变
11、如图所示,一个小型旋转电枢式交流发电机,其线圈绕垂直于匀强磁场方向的水平轴逆时针方向匀速转动。已知线圈匝数为n,电阻为r,转动的角速度为
,外接电阻为R,电流表示数为I。下列说法中正确的是( )
A.穿过线圈的磁通量随时间周期性变化,周期为
B.穿过线圈的磁通量的最大值为
C.线圈从图示位置转过90°开始计时,半个周期内磁通量变化量为0
D.线圈从图示位置转过90°时,电流表示数为0
12、中国大型起重机吊装精细化操控有较高的稳定性,现一塔式起重机以额定功率将地面上的重物由静止沿竖直方向吊起,若吊升高度足够且不计额外功,则( )
A.重物的速度一直增加
B.重物先做匀加速直线运动后做匀速直线运动
C.重物所受起重机牵引力保持不变
D.重物所受起重机牵引力先减小后不变
13、天花板下悬挂的轻质光滑小圆环P可绕过悬挂,点的竖直轴无摩擦地旋转。一根轻绳穿过P,两端分别连接质量为和
的小球A、B。两球同时做如图所示的圆锥摆运动,且两球始终在同一水平面内,则( )
A.两球的向心加速度大小相等
B.两球运动的角速度大小相等
C.A、B两球的质量之比等于
D.A、B两球的线速度大小之比等于
14、如图所示,真空中有等量异种点电荷、
分别放置在
、
两点,在
、
的连线上有对称点
、
,
、
连线的中垂线上有对称点
、
,下列说法正确的是( )
A.在、
连线的中垂线上,
点电势最高
B.正电荷从点沿
、
连线的中垂线移到
点的过程中,受到的静电力先减小后增大
C.正电荷在点电势能大于在
点电势能
D.正电荷在点电势能小于在
点电势能
15、如图所示,等边三角形△ABC处于足够大匀强电场(未画出)中,电场方向平行于三角形所在平面.将一电子从无穷远分别移到A点和B点,电场力做功分别为1eV和,若将电子由无穷远移到C点,电势能变化为0。已知电子电量为e,等边三角形的边长为1cm,取无穷远处电势为0,下列说法正确的是( )
A.A点的电势为
B.B点的电势为1V
C.电场强度的方向由A指向C
D.电场强度的大小为200V/m
16、如图所示,横截面为半圆的玻璃砖放置在平面镜上,直径AB与平面镜垂直。一束激光a射向半圆柱体的圆心O,激光与AB的夹角为,已知玻璃砖的半径为12cm,平面镜上的两个光斑之间的距离为
,则玻璃砖的折射率为( )
A.
B.
C.2
D.
17、镅射线源是火灾自动报警器的主要部件,镅的半衰期为432年,衰变方程为
。则( )
A.发生的是衰变
B.温度升高,镅的半衰期变小
C.衰变产生的射线能穿透几毫米厚的铝板
D.100个镅经432年将有50个发生衰变
18、利用衰变测定年代技术进行考古研究,可以确定文物的大致年代,
衰变方程为
,
的半衰期是5730年。下列说法中正确的是( )
A.方程中的X是电子,它是碳原子电离时产生的,是原子的组成部分
B.衰变是由于原子核吸收太多外界能量而导致自身不稳定才发生的
C.因为的比结合能小于
的比结合能,所以这个衰变反应才能发生
D.半衰期是仅对大量的放射性原子核的描述,但该元素构成不同化合物时,半衰期会发生变化
19、某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运动半径的,设月球绕地球运动的周期为27天,则此卫星的运行周期为( )
A.天
B.天
C.1天
D.9天
20、如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上、下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上、下两部分气体的压强均为p0。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了
。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。流入汽缸内液体的质量是( )
A.
B.
C.
D.
21、如图所示,水平绷紧的传送带AB长L=6.0m,始终以恒定速率v1=4.0m/s运行。初速度大小为v2=6.0m/s的小物块(可视为质点)从与传送带等高的光滑水平地面上经 A 点滑上传送带。小物块m=1.0kg,物块与传送带间动摩擦因数μ=0.40,g取10m/s2,则小物块向左运动的最大距离为______m,小物块返回 A 点速度为______m/s,小物块在传送带上运动时,因相互间摩擦力产生的热量为______J 。(结果均保留两位有效数字)
22、一列简谐横波沿x轴传播,t=0时刻的波形如图所示,则这列波的波长为_______m;此时x=3m处的质点正在向上运动,则x=2.5m处的质点向_______(选填“上”或“下”)运动;当x=3m处的质点在波峰时,x=5m处的质点恰好在_______(选填“波峰”、“波谷”或“平衡位置”)。
23、一定质量的理想气体从状态A经等压过程到状态B,如图所示。在这个过程中,气体压强,吸收的热量
,求此过程中气体内能的增量。
24、(1)在测定一根粗细均匀合金丝电阻率的实验中,利用螺旋测微器测定合金丝直径,如图所示,甲图是将螺旋测微器小砧靠在一起时的读数,为______mm;乙图是测量合金丝直径时的读数,则合金丝的直径为______mm;
(2)某实验小组为测量电压表V1的内阻,先用多用电表的欧姆档进行了一次测量,为进一步准确测量电压表V1的内阻,设计了如图甲所示的电路,请根据电路图连接实物图乙______。
25、某物体做直线运动,运动时间t内位移为s,物体的图像如图所示,则物体运动的加速度大小为__________m/s2,0-2s内的平均速度大小为__________m/s
26、如图所示,在一水平向右匀强电场中,有两质量均为m、带等量异号电荷的小球M和N,通过两根长度均为L的绝缘轻绳悬挂在电场中O点,平衡后两轻绳与竖直方向的夹角均为θ=45°。若仅将两小球的电荷量同时变为原来的2倍,两小球仍能平衡在原位置。已知静电力常量为k,重力加速度大小为g,则球M带______电荷(填“正”或“负”),其原来带电量大小为______。
27、某同学想探究动摩擦因数,进行了如下图1的实验。图中小车质量为m,连接在小车后面的纸带穿过打点计时器,实验时通过改变砂桶质量,实现外力的改变,桌面水平放置,细线与桌面平行,重力加速度为g。
(1)打点计时器分为电磁打点计时器和电火花打点计时器,如本实验中选用的是电火花打点计时器,则使用的电压是_________。
A.直流 B.
交流 C.
直流 D.
交流
(2)一次实验结束后,取下纸带,取相邻两个计数点时间间隔,用刻度尺测得
,则小车加速度
_________。(保留两位有效数字)
(3)在进行多次实验后,读取并记录弹簧测力计示数F,做出了图(如图3所示),其中斜率为k,纵截距为b,则动摩擦因数
_________。(用k、b、g表示)
(4)实际动摩擦因数比所求的偏小,主要原因是_________。
28、李凯同学是学校的升旗手,他每次升旗都做到了在庄严的国歌响起时开始升旗,当国旗结束时恰好五星红旗升到了高高的旗杆顶端.已知国歌从响起到结束的时间是48 s,旗杆高度是19 m,红旗从离地面1.4 m处开始升起.若设李凯同学升旗时先拉动绳子使红旗向上匀加速运动,时间持续4 s,然后使红旗做匀速运动,最后使红旗做匀减速运动,加速度大小与开始升起时的加速度大小相同,红旗到达旗杆顶端时的速度恰好为零.试计算李凯同学升旗时使红旗向上做匀加速运动加速度的大小和红旗匀速运动的速度大小.
29、如图所示,匀强电场方向斜向右下方,与水平方向夹角为30°,一个质量为m、电荷量为q的带正电小球从某根电场线上的P点以与电场线成60°角的方向斜向右上方抛出,初速度为v0。已知重力加速度为g,电场强度大小,不计空气阻力。求:
(1)小球再次到达这根电场线上的Q点(未画出)时运动的时间;
(2)将电场方向改为竖直向上,加上垂直纸面向外的匀强磁场,其他条件不变,小球仍能到达Q点,求所加匀强磁场磁感应强度大小B。
30、在竖直平面内,一根长为L的绝缘细线,一端固定在O点,另一端拴着质量为m、电荷量为+q的小球。小球始终处在场强大小为、方向竖直向上的匀强电场中,现将小球拉到与O点等高处,且细线处于拉直状态,由静止释放小球,当小球的速度沿水平方向时,细线被拉断,之后小球继续运动并经过P点,P点与O点间的水平距离为L。重力加速度为g,不计空气阻力,求
(1)细线被拉断前瞬间,细线的拉力大小;
(2)O、P两点间的电势差。
31、如图所示,一竖直放置的圆形绝热气缸,总高度h1=100cm,上端开口,底端有一加热装置,左侧连接粗细均匀且两端开口的细玻璃管,玻璃管内有一段水银柱,气缸内部有一绝热活塞,可在气缸上部分移动,活塞下部分封闭质量一定的某种气体(可看做理想气体),加热前,活塞距缸底的高度h2=50cm,气体温度t=27℃,玻璃管水银柱的高度分别为h3=30cm,h4=44cm,大气压p0=76cmHg,加热装置体积及细玻璃管中的气体体积忽略不计,活塞与气缸的摩擦不计,求:
(1)加热前,活塞下方气体的压强;
(2)缓慢加热气体,当活塞刚移动时,玻璃管左侧水银柱的高度变为h5=53cm,此时活塞下方气体的热力学温度是多少K?
(3)继续缓慢加热,活塞刚好运动到气缸顶部时气体的热力学温度是多少K?
32、如图(a),某同学骑自行车以速率v1进入一段直下坡,在坡道上不蹬踏板而自由加速下滑。自行车受到路面的阻力略去不计,空气阻f1与车速大小成正比,比例系数为k,方向与车速方向相反,人与车总质量为m,重力加速度为g.已知自行车到坡底时的速率为v2.
(1)在图(b)中定性画出自行车在坡道上的速率v与在坡道上运动时间t1的关系;
(2)到坡底以速率v2进入平直路面后,该同学立即开始刹车。在刹车阻力f2和空气阻力f1的共同作用下匀减速运动T时间后停止,求刹车阻力f2与刹车时间t2的关系,以及刹车过程f2的冲量;
(3)在第(2)问中,已知刹车过程前轮与地面接触处始终不打滑。从开始刹车时测量,车载速率表显示前轮转动第一圈过程车辆前进的平均速度为7.0m/s,转动第二圈过程车辆前进的平均速度为6.0m/s,则该刹车过程前轮总共转了多少圈(解出数值结果,保留一位小数)?