1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、物质的结构决定物质的性质。请回答下列涉及物质结构和性质的问题:
(1)第二周期中,元素的第一电离能处于B与N之间的元素有_________种。
(2)某元素位于第四周期Ⅷ族,其基态原子的未成对电子数与基态碳原子的未成对电子数相同,则其基态原子的价层电子排布式为_________________
(3)乙烯酮(CH2=C=O)是一种重要的有机中间体,可用CH3COOH在(C2H5O)3P=O存在下加热脱H2O得到。乙烯酮分子中碳原子杂化轨道类型是_____________,1mol (C2H5O)3P=O分子中含有的σ键与π键的数目比为__________________。
(4)已知固态NH3、H2O、HF的氢键键能和结构如下:
解释H2O、HF、NH3沸点依次降低的原因___________________。
(5)碳化硅的结构与金刚石类似(如图所示),其硬度仅次于金刚石,具有较强的耐磨性能。碳化硅晶胞结构中每个碳原子周围与其距离最近的硅原子有___________个,与碳原子等距离最近的碳原子有__________个。已知碳化硅晶胞边长为a pm,则碳化硅的密度为__________g·cm3。
3、[化学——选修3:物质结构与性质]氢化铝钠(NaAlH4)是一种新型轻质储氢材料,掺入少量Ti的NaAlH4在150℃时释氢,在170℃、15.2MPa条件下又重复吸氢。NaAlH4可由AlCl3和NaH在适当条件下合成。NaAlH4的晶胞结构如右下图所示。
(1)基态Ti原子的价电子轨道表示式为 。
(2)NaH的熔点为800℃,不溶于有机溶剂。NaH属于 晶体,其电子式为 。
(3)AlCl3在178℃时升华,其蒸气的相对分子质量约为267,蒸气分子的结构式为 (标明配位键)。
(4)AlH4-中,Al的轨道杂化方式为 ;例举与AlH4-空间构型相同的两种离子 (填化学式)。
(5)NaAlH4晶体中,与Na+紧邻且等距的AlH4-有 个;NaAlH4晶体的密度为 g·cm-3(用含a的代数式表示)。若NaAlH4晶胞底心处的Na+被Li+取代,得到的晶体为 (填化学式)。
(6)NaAlH4的释氢机理为:每3个AlH4-中,有2个分别释放出3个H原子和1个Al原子,同时与该Al原子最近邻的Na原子转移到被释放的Al原子留下的空位,形成新的结构。这种结构变化由表面层扩展到整个晶体,从而释放出氢气。该释氢过程可用化学方程式表示为 。
4、铜是应用较为广泛的有色金属。
(1)基态铜原子的价电子排布式为_____________。
(2)金属化合物Cu2Zn合金具有较高的熔点、较大的强度、硬度和耐磨度。则Cu2Zn合金的晶体类型是______。
(3)某含铜化合物的离子结构如图所示。
① 该离子中存在的作用力有__________。
a.离子键 b.共价键 c.配位键
d.氢键 e.范德华力
② 该离子中第二周期的非金属元素的第一电离能由大到小的顺序是______。
③ 该离子中N原子的杂化类型有_________。
(4)晶胞有两个基本要素:
① 原子坐标参数,表示晶胞内部各原子的相对位置,下图为铜与氧形成的某化合物晶胞,其中原子坐标参数A 为(0,0,0);B为(,0,
);C为(
,
,0),则D原子的坐标参数为_____________。
② 晶胞参数,描述晶胞的大小和形状,设晶胞的边长为apm,则O的配位数是_______。
5、甲醇是重要的化学工业基础原料和清洁液体燃料。工业上可利用CO或CO2来生产燃料甲醇。已知甲醇制备的有关化学反应以及在不同温度下的化学反应平衡常数如下表所示:
化学反应 | 平衡常数 | 温度℃ | |
500 | 800 | ||
①2H2(g)+CO(g) | K1 | 2.5 | 0.15 |
②H2(g)+CO2(g) | K2 | 1.0 | 2.50 |
③3H2(g)+CO2(g) | K3 |
|
|
(1)反应②是________________(填“吸热”或“放热”)反应。
(2)某温度下反应①中H2的平衡转化率(a)与体系总压强(P)的关系,如左下图所示。则平衡状态由A变到B时,平衡常数K(A)_____________K(B)(填“>”、“<”或“=”)。据反应①与②可推导出K1、K2与K3之间的关系,则K3=_______(用K1、K2表示)。
(3)在3 L容积可变的密闭容器中发生反应②,已知c(CO)与反应时间t变化曲线Ⅰ如右上图所示,若在t0时刻分别改变一个条件,曲线Ⅰ变为曲线Ⅱ和曲线Ⅲ。
当曲线Ⅰ变为曲线Ⅱ时,改变的条件是_____________________。
当曲线Ⅰ变为曲线Ⅲ时,改变的条件是_____________________。
(4)一种甲醇燃料电池,使用的电解质溶液是2mol·L-1的KOH溶液。
请写出加入(通入)b物质一极的电极反应式_________________;
每消耗6.4g甲醇转移的电子数为_______________。
(5)一定条件下甲醇与一氧化碳反应可以合成乙酸。通常状况下,将a mol/L的醋酸与b mol/LBa(OH)2溶液等体积混合后,溶液中:2c(Ba2+)= c(CH3COO-),用含a和b的代数式表示该混合溶液中醋酸的电离常数Ka为________________。
6、(Ⅰ)甲醇是重要的化学工业基础原料和清洁液体燃料。工业上可利用CO或CO2来生产燃料甲醇。已知甲醇制备的有关化学反应以及在不同温度下的化学反应平衡常数如下表所示:
化学反应 | 平衡常数 | 温度℃ | |
500 | 800 | ||
①2H2(g)+CO(g) | K1 | 2.5 | 0.15 |
②H2(g)+CO2(g) | K2 | 1.0 | 2.50 |
③3H2(g)+CO2(g) | K3 |
|
|
(1)据反应①与②可推导出K1、K2与K3之间的关系,则K3=_______(用K1、K2表示)。500℃时测得反应③在某时刻,H2(g)、CO2(g)、CH3OH(g)、H2O (g)的浓度(mol/L)分别为0.8、0.1、0.3、0.15, 则此时 V正_____ V逆(填“ > ”、“=”或“<”)。
(2)在3 L容积可变的密闭容器中发生反应②,已知c(CO)-反应时间t变化曲线Ⅰ如图所示,若在t0时刻分别改变一个条件,曲线Ⅰ变为曲线Ⅱ和曲线Ⅲ。当曲线Ⅰ变为曲线Ⅱ时,改变的条件是______________。当曲线Ⅰ变为曲线Ⅲ时,改变的条件是_________________。
(3)一定条件下甲醇与一氧化碳反应可以合成乙酸。通常状况下, 将a mol/L的醋酸与b mol/LBa(OH)2溶液等体积混合,反应平衡时,2c(Ba2+)= c(CH3COO-),用含a和b的代数式表示该混合溶液中醋酸的电离常数为________________。
(Ⅱ)已知草酸是一种二元弱酸,草酸氢钠(NaHC2O4)溶液显酸性。
(1)常温下,向10 mL 0.01 mol·L-1 H2C2O4溶液中滴加10mL 0.01mol·L-1 NaOH溶液时,比较溶液中各种离子浓度的大小关系_________________________ ;
(2)称取6.0g含H2C2O4·2H2O、KHC2O4和K2SO4的试样,加水溶解配成250 mL 溶液。量取两份此溶液各25 mL,分别置于两个锥形瓶中。第一份溶液中加入2滴酚酞试液,滴加0.25mol·L-1 NaOH 溶液至20mL时,溶液由无色变为浅红色。第二份溶液滴加0.10 mol·L-1 酸性KMnO4溶液至16mL时反应完全。则原试样中H2C2O4·2H2O的的质量分数为_______ 。
7、以TiO2为催化剂,在光照条件下可将还原为HCOO-等有机物。
(1)制备TiO2:
TiCl4转化为TiO2·xH2O的化学方程式是_______。
(2)光催化还原的反应过程如下图所示。
A侧产生HCOO-的反应式为_______。
在光照和TiO2存在下,以体积相同的0.25mol·L-1Na2CO3溶液为反应物,相同时间后检测HCOO-浓度,结果如下表。
实验 | 溶液中添加的其它成分 | 通入的气体 | |
ⅰ | - | - | 73.5 |
ⅱ | - | CO2 | 92.6 |
ⅲ | - | O2 | 2.1 |
ⅳ | Na2SO3 | - | 158.1 |
(3)推测HCO也能在该条件下被还原为HCOO-,结合表中数据说明推测的依据:_______。
(4)实验iii中HCOO-浓度明显低于实验i,可能的原因是_______。
(5)研究实验iv中HCOO-浓度明显高于实验i的原因,设计并完成实验v。
实验v:光照条件下,未添加TiO2时重复实验iv,没有检测到SO。
①实验v中检测SO的操作和现象为_______。
②对比实验iv、v,分析实验iv中Na2SO3的作用:_______(答出2点)。
8、碳酸和一水合氨是重要的弱酸和弱碱,常温下,其电离常数如下表所示。回答下列问题:
弱电解质 | H2CO3 | NH3·H2O | |
电离常数 |
(1)碳酸的一级电离方程式为______,二级电离常数表达式________。
(2)浓度均为0.01 mol.L-1的H2CO3溶液和NH3·H2O溶液等体积混合,混合溶液中的溶质是_______(写化学式),混合溶液中、
、
、
的浓度由大到小的顺序是_______。
(3)和
在水溶液中相互促进水解,反应为
,则常温下,该反应的平衡常数
_______。(保留2位有效数字)。
(4)室温下,向100 mL 0.2 mol.L-1NaHCO3溶液中加入100 mL 0.2 mol·L-1NH3·H2O溶液,则+____+_____。
9、亚硝酸钠(NaNO2)主要用于医药、染料和漂白等行业,也常用于食品保鲜剂。某小组拟利用氮氧化物(可用NOx表示)制备亚硝酸钠,简易流程如图。
已知:NO2+NO+Na2CO3=2NaNO2+CO2,2NO2+Na2CO3=NaNO2+NaNO3+CO2
(1)利用饱和NH4Cl溶液和饱和NaNO2溶液在加热条件下反应可制得N2,该反应的化学方程式为______;实验时装置B中应间断性通入适量的O2,其目的是______。
(2)装置C中盛装饱和Na2CO3溶液的仪器的名称是______;NO不能单独被纯碱溶液吸收,为了使NOx完全被纯碱溶液吸收且产品纯度最高,x=______。
(3)装置D的作用是______,采用“倒置漏斗”措施的目的是______。
(4)设计实验探究NaNO2的性质。实验完毕后,从装置C中分离出NaNO2固体粗产品(不含Na2CO3杂质),取少量上述产品配制成溶液,分成三份分别进行甲、乙、丙三组实验,实验操作及现象、结论如表。
实验 | 实验操作及现象 | 结论 |
甲 | 滴入无色酚酞溶液中,无色酚酞溶液变红 | HNO2是弱酸 |
乙 | 滴入少量酸性KI-淀粉溶液中,振荡,酸性KI-淀粉溶液变蓝 | 酸性条件下NO |
丙 | 滴入少量酸性KMnO4溶液中,振荡,酸性KMnO4溶液褪色 | 酸性条件NO |
上述实验______(填标号)的结论不可靠,理由是______。经实验测得实验丙反应后的溶液中氮元素仅以NO的形式存在,酸性KMnO4溶液与NO
反应的离子方程式为______。
(5)吸光光度法是借助分光光度计测定溶液的吸光度,根据朗伯-比耳定律确定物质溶液的浓度。亚硝酸钠标准曲线数据如表所示。(已知:稀溶液的吸光度与浓度成正比)
标准使用液浓度/(μg•mL‑1) | 取标准液体积/mL | 相当于亚硝酸钠的质量/μg | 吸光度A |
1 | 4.00 | 4 | 2.7045 |
取0.001gNaNO2样品溶于蒸馏水配成1000mL稀溶液,取4.00mL该稀溶液测得吸光度为2.7000,对比标准曲线数据可知,该亚硝酸钠产品纯度为______(列出计算式即可,已知1μg=10-6g)。
10、二氯化钒(VCl2)有强还原性和吸湿性,熔点为425°C、沸点为900°C,是制备多种医药、催化剂、含钒化合物的中间体。学习小组在实验室制备VCl2并进行相关探究。回答下列问题:
(1)小组同学通过VCl3分解制备VCl2。
①按气流方向,图中装置合理的连接顺序为_______(用小写字母填空)。
②A中盛放NaNO2的仪器名称为_______, 其中发生反应的离子方程式为_______。
③实验前需通入N2,其作用为_______。
(2)测定产品纯度:实验后产品中混有少量VCl3杂质。称量2.795g样品,溶于水充分水解,调pH后滴加Na2CrO4作指示剂,用0.5000mol/LAgNO3标准溶液滴定Cl-,达到滴定终点时消耗标准液体积为100.00mL(Ag2CrO4为砖红色沉淀,杂质不参加反应)。
①滴定终点的现象为_______。
②产品中VCl3与VCl2的物质的量之比为_______。
(3)小组同学进一步用如图所示装置比较含钒离子的还原性。接通电路后,观察到右侧锥形瓶中溶液蓝色逐渐变深,发生的电极反应式为_______,则VO2+、V2+的还原性较强的是_______。
11、某实验小组制备,取1.12g实验制得的产物(已知
的相对分子质量为158.6)加水溶解,配成100mL溶液,用移液管取出25.00mL于锥形瓶中,滴入几滴
作指示剂,已知
为砖红色沉淀,用浓度为0.100
的硝酸银标准溶液滴定,重复滴定三次测得硝酸银标准溶液用量分别为19.98mL、18.00mL、20.02mL。
(1)产物的纯度为_______(保留三位有效数字);
(2)写出简要计算过程:_______。
12、硫酸镍广泛应用于电镀、电池、催化剂等工业。某科研小组以粗硫酸镍(含Cu2+、Fe3+、Ca2+、 Mg2+、Zn2+等)为原料,经下图一系列除杂过程模拟精制硫酸镍工艺,回答下列问题。
(1)①“硫化除铜”过程中除Cu2+发生的反应外,另一离子反应方程式为___________。
②“硫化除铜”后滤液1中主要金属阳离子为Ca2+、Mg2+、Zn2+、___________。
(2)“氧化除杂” 时加入Cl2和Ni (OH)2的主要作用分别是__________、_______。
(3)“氟化除杂”后滤渣2的主要成分是___________(写化学式)。
(4)“滤液3”中加入有机萃取剂后,Zn2+与有机萃取剂形成易溶于萃取剂的络合物。该过程选用的萃取剂一般为P204[ (二(2-乙基)己基)磷酸酯],其萃取原理为: 2 +Zn2+
+2H+,反萃取是用反萃取剂使被萃取物从负载有机相返回水相的过程,为萃取的逆过程。取“萃取除锌”过程中的有机相,加入反萃取剂可回收ZnSO4,具体过程如图,其中反萃取剂可以选择下列哪种物质________ (填选项)。
A.NaOH溶液 B. H2SO4溶液 C.ZnSO4溶液
(5)“萃取除锌”后的溶液经操作A可得硫酸镍晶体,称取1.000g硫酸镍晶体(NiSO4·6H2O )样品溶解,定容至250mL。取25.00mL试液,滴入几滴紫脲酸胺指示剂,用0.01mol·L-1的EDTA (Na2H2Y)标准溶液滴定至终点,重复操作2-3次,平均消耗EDTA标准溶液体积为23.50mL。
已知:反应为Ni2++H2Y2-=NiY2- +2H+;紫脲酸胺:紫色试剂,遇Ni2+显橙黄色。
①滴定终点的操作和现象是________。
②计算样品纯度为___________。(保留三位有 效数字,不考虑杂质反应)
13、丙烯腈(C3H3N)是一种重要的化工原料,以丙烯(C3H6)、NH3、O2为原料,选择合适的催化剂合成丙烯腈的主要反应如下:
反应Ⅰ:
反应Ⅱ:
反应Ⅲ:
(1)℃时,向恒压容器中充入0.2mol
、0.6mol
和0.6mol
,发生反应Ⅲ,达到平衡时,放出94.1kJ能量;若向相同容器中充入1.5mol HCN(g)和3mol
(g),达平衡时吸收235.25kJ能量,则
_______
;两种情况下反应物的转化率
_______。
(2)200℃,160Pa时,向恒压容器中充入、
和
的混和气体制取丙烯腈,发生上述三个反应。平衡后,测得
(g)、
(g)、HCN(g)的体积分数分别为6%、10%、6%,其中三种反应物的体积分数相等。则
(g)的体积分数为_______,丙烯腈
(g)的产率为_______(保留3位有效数字),反应Ⅱ的
_______
。(已知:
)
(3)反应时间相同、反应物起始投料相同时,丙烯腈产率与反应温度的关系如图所示(图中虚线表示相同条件下丙烯腈平衡产率随温度的变化)。Y点丙烯腈产率比X点高的原因是_______。Z点正反应速率_______X点正反应速率(填“>”、“<”或“无法比较”),理由是_______。