1、已知方程组,下列说法正确的是( )
①a2+b2=12;②(a﹣b)2=8;③;④
.
A.1
B.2
C.3
D.4
2、若x=y,则下列变形正确的是( )
A.ax=﹣ay
B.ax+1=ay﹣1
C.ax+1=ay+1
D.
3、晚上8点30分时,钟表上的时针和分针所成的角是( )
A.90° B.75° C.82.5° D.60°
4、若关于x的不等式的解都能使不等式
成立,则a的取值范围是( )
A.
B.
C.
D.或
5、下列图形中∠1与∠2相等的有( )
A. 4个 B. 3个 C. 2个 D. 1个
6、妈妈买了一瓶香水花了240元,其中消费税为售价的25%,妈妈为此支付消费税( )元
A.60
B.192
C.48
D.180
7、计算:3÷(-1)的结果是( )
A.-3 B.-2 C.2 D.3
8、如图,从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是( ) .
A. 80° B. 90° C. 100° D. 95°
9、如图,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )
A.相交 B.平行 C.垂直 D.不能确定
10、计算的结果是( )
A.
B.
C.
D.
11、有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷10个房间,结果其中有 墙面未来得及粉刷;同样时间内7名二级技工粉刷了15个房间之外,还多粉刷了另外的
墙面.每名一级技工比二级技工一天多粉刷
墙面.设每个房间需要粉刷的墙面面积为
平方米,一级技工每天粉刷y平方米,下列方程正确有( )个
(1) (2)
(3) (4)
A. 4 B. 3 C. 2 D. 1
12、如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是,小正方形的面积是
,若用
,
分别表示矩形的长和宽(
),则下列关系中不正确的是( )
A.
B.
C.
D.
13、如图,是由一些小棒搭成的图案,图①用了5根,图②用了 9根,图③用了13根,…,按照这种方式摆下去,摆第n个图案用了2025根小棒,则______.
14、活动课上,同学们将一条数轴进行对折,如果按聪聪组的对折方案“使表示的点与表示7的点重合”,那么对折后数轴上表示___________的点与原点重合.
15、观察下列单项式:,
,
,
,
,
按此规律,可以得到第2020个单项式是______,第
个单项式是____________.(n是正整数)
16、把(-3)-(-5)+(-9)写成省略加号的和的形式是_____。
17、如果甲、乙两地相距100千米,汽车每小时行驶千米,那么从甲地到乙地需要______小时(用含有v的代数式表示).
18、把上升记为
,那么下降
记为______.
19、对有理数a、b,定义运算★如下,a★b=,则﹣5★6=_____.
20、若关于的方程
是一元一次方程,则
_______________.
21、是一个三位正整数,设
(
,且
为正整数),若
的百位数字、个位数字之和与十位数字之差为6,则称这个数为“昌荣数”,并规定
,如
,则248是“昌荣数”,
.
(1)若是一个“昌荣数”,且
,求
的最大值;
(2)若一个“昌荣数”满足
,求
的值.
22、先化简,再求值:2(3ab2﹣a2b+ab)﹣3(2ab2﹣4a2b+ab),其中a=﹣1,b=2.
23、某中学为选拔一名选手参加我县“我心中的绿色家园”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下表是小明、小华在选拔赛中的得分情况:
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
小明 | 85 | 70 | 80 | 85 |
小华 | 90 | 75 | 75 | 80 |
结合以上信息,回答下列问题:
(1)小华在选拔赛中四个项目所得分数的众数是_________,中位数是_________;
(2)若评总分时,按服装占5%,普通话占15%,主题占40%,演讲技巧占40%考评,你认为小明和小华谁更优秀?
24、先化简,再求值:,其中
,
.
25、已知是直线
上的一点,
是直角,
平分
.
(1)在图1中,若,求
的度数;
(2)将图1中的绕顶点
顺时针旋转至图2的位置,若
,试用含
的式子表示
;
(3)继续旋转至图3的位置,若
,其他条件不变,试将图形补充完整,则
_____(用含
的式子表示).
26、如图,已知,
,点E在线段BC的延长线上,AE平分
,连接DE,
,
.
(1)求证;
(2)求的度数.